Exercises for lecture 2

Exercise 1: Maxwell theory in differential form notation

In this exercise we assume a flat Lorentzian metric, $g_{\mu \nu}=\eta_{\mu \nu}$. Recall that the current one-form can be written in components as $J=J_{\mu} d x^{\mu}=\rho d x^{0}+j_{i} d x^{i}$.
a. Show that the inhomogeneous Maxwell equations of motion, $\nabla \cdot E=\rho$ and $\nabla \times B-$ $\partial E / \partial t=j$ can be written as $d \star F=\star J$.
b. What does the equation $d^{2}=0$ imply for ρ and j ? Explain that the resulting equation can be interpreted as conservation of charge.
c. To gauge fix the Maxwell gauge symmetry, one often chooses the condition $\partial_{\mu} A^{\mu}=0$. Write this condition in differential form notation.

Exercise 2: Equations of motion for Maxwell theory

Show that the Euler-Lagrange equations for the action $S=\int F \wedge \star F+A \wedge \star J$ are indeed Maxwell's homogeneous equations of motion (2.49).

* Exercise 3: The Dirac monopole (hand-in exercise)

In this exercise, we will work with three-dimensional polar coordinates (r, θ, ϕ), defined by

$$
\begin{aligned}
x & =r \sin \theta \cos \phi \\
y & =r \sin \theta \sin \phi \\
z & =r \cos \theta
\end{aligned}
$$

in terms of the cartesian coordinates (x, y, z). Of course, this map is not 1-to- 1 ; in particular, θ and ϕ are only defined up to multiples of 2π. The time coordinate t will not play a role in this exercise, so you may assume we are working on \mathbb{R}^{3}.

We will consider the field strength

$$
F=\frac{g}{4 \pi} \sin \theta d \theta \wedge d \phi
$$

with $g \neq 0$.
a. Compute $\int_{S^{2}} F$, where F is a two-sphere centered at the origin of \mathbb{R}^{3}.
b. Use the previous result and Stokes' theorem to show that F can not be a closed form.
c. Naively computing $d F$, one still seems to find $d F=0$. How can this apparent contradiction with the result of (b) be understood?
d. One way to understand the result of (c) is to compute $\star F$. Show that indeed $\star F$ has a singularity at the origin of \mathbb{R}^{3}.
Summarizing, we have found that our field strength F is well-defined and closed only on $\left(\mathbb{R}^{3}\right)^{*} \equiv \mathbb{R}^{3} \backslash\{0,0,0\}$. As this manifold is not topologically trivial, we cannot use Poincaré's lemma to conclude that $F=d A$ everywhere. However, if we define D^{+}and D^{-}as the regions where $\theta \neq \pi$ and $\theta \neq 0$ respectively (that is, D^{+}is \mathbb{R}^{3} excluding the negative z-axis, and D^{-}is \mathbb{R}^{3} excluding the positive z-axis), these two regions are topologically trivial. On these regions, we now consider the 1 -forms

$$
A^{+}=\frac{g}{4 \pi}(1-\cos \theta) d \phi, \quad A^{-}=-\frac{g}{4 \pi}(1+\cos \theta) d \phi
$$

e. (Easy:) Show that $F=d A^{+}$and $F=d A^{-}$in D^{+}and D^{-}respectively.
f. Compute $A^{+}-A^{-}$. Where is this 1 -form defined? In particular: is that space topologically trivial? Can A^{+}be obtained from A^{-}using a gauge transformation?
One can slightly generalize the concept of a gauge transformation as follows. In quantum mechanics, one is interested in the wave function $\psi(x)$ of a particle. Under a transformation of the potential

$$
A \rightarrow A+\omega
$$

with ω a closed one-form, the wave function transforms as

$$
\psi(x) \rightarrow \psi(x) \exp \left(i \int_{\gamma} \omega\right)
$$

where γ is a path from an arbitrarily chosen base point to the point to x. A large gauge transformation is a transformation of A by a one-form ω such that the transformation of $\psi(x)$ is well-defined.
g. In the previous sentence, "well-defined" means that the transformed value of $\psi(x)$ should not depend on the choice of a path γ. Argue that in a topologically trivial space, this condition is automatically satisfied if ω is closed.
h. Which additional condition should ω satisfy if the space is not topologically trivial? (In particular: if it is not simply connected?)
i. In our example, which condition should g satisfy so that A^{+}and A^{-}are related by a large gauge transformation?

The upshot of this exercise is therefore that, assuming the condition found in (i) is satisfied, our field strength F describes a "good" electromagnetic field configuration on $\mathbb{R}^{3} \backslash\{0,0,0\}$. The interpretation of this configuration is that there is a "defect" at the singular point in the origin - an object which can be interpreted as a particle.
j. Show that this particle does not have an electric charge, but that by replacing the E-field with the B-field, it can be considered to have a "magnetic charge". This particle (which has never been observed in nature!) is called the Dirac magnetic monopole.

